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Abstract

fgﬂﬂ}

General integral equations for the determination
of entropy, enthalpy, and internal energy are derived.
In the first part of this paper the integration path is
taken to be on the real gas surface thus yielding one
set of equations. In the latter part of this paper
the integration path is defined such that ideal gas
specific heats and reference properties are introduced.
The latter set of integral equations are applied to
‘a particular equation of state resulting in algebraic
expressions for the entropy, enthalpy, and internal

energy.




FUNCTIONS FCR THE CALCULATION OF
ENTROPY, ENTHALPY, AND INTERNAL ENERGY FOR REAL FLUIDS
USING EQUATIONS OF STATE AND SPECIFIC HEATS

J. G. Hust and A. L. Gosman

CEL National Bureau of Standards
Boulder, Colorado

INTRODUCTION

Several recent publications [1, 2, 3, 4, 5] from this laboratory
on the calculation of thermodynamic properties of cryogenic fluids
contain various relations for the determination of entropy, enthalpy,
and internal energy. Considerable interest has been expressed about
the derivation and application of these equations; this interest generally
results from the fact that standard texts on thermodynamics are, almost
without exception, inadequate in the presentation of materiasl on the
calcplation of thermodynamic properties. The purpose of this paper is
to,dérive the functions necessary for the calculation of thermodynamic
properties. These derivations are intended to give the reader a better
understanding of the methods of calculating thermodynamic properties and
thus of the limitations of the tables so produced.

In the first part of this paper, general thermodynamic relations
are presented for the calculation of thermodynamic properties from
functions representing P-V-T and specific heat, velocity of sound or
Joule-Thomson data. In the latter part of the paper, the equations for
thermodynamic properties are developed in terms of zero-pressure, i.e.,
ideal gas, specific heats and are applied to a particular equation of
state.
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Superscripts
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Subscripts

absolute
absolute

specific

density =

specific
specific
specific
specific
specific

specific

NOTATION

pressure
temperature
volume
1/v
entropy
enthalpy
internal energy
heat capacity at constant pressure
heat capacity at constant volume

heat capacity at constant saturation

velocity of sound
Joule-Thomson coefficient

universal gas constant

denotes an ideal gas property

denotes a property (real or idesl) at very
low pressures (P =~ 0)

denotes a saturated vapor property

denotes a saturated liquid property

denotes & reference state property

denotes a critical point property

Subscripts on partial derivatives or integrals indicate the
property to be held constant and, in addition, the subscript o

indicates constant saturation.




GENERAL THERMODYNAMIC RELATIONS AND CALCULATIONS

.Basic relations such as Maxwell's equations (1) and (2),
definitions of specific heats and enthalpy (3) s (’4) R (5) , and (8) and
two other thermodynamic equations, (6) and (T), ere presented in many
elementary thermodynamic texts.
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These equations illustrate that P-V-T relations are sufficient to
determine entropy, enthalpy and internal energy differences along
isothermal paths. In addition,it may also be observed that the



variations in S, U, and H along isobars or isometrics can be determined
from the corresponding specific heats at constant pressure or volume,
respectively, but not from P-V-T relations alone. Thus the changes in

S, U, or H between two state points are calculated by integrating along

a series of isotherms and isobars or isometrics. (Once either Hor U

has been determined the other may be obtained from (8).) The isothermsl
changes in S and U, with V as an independent variable, obtained by
integrating equations (2) and (6) with respect to volume are respectively

ASp = fvjz (%)Vdv, (9)

T
AUp = vaja [T(%)V - P} av. (10)

(The subseript "T" indicates the path is isothermal.)

If, instead, P is considered an independent variable, the isothermal
changes in S and H obtained by integrating equations (1) and (7) with

respect to pressure are respectively

ASp = %j:a <% , 3P (9a)
AHnp= TLTE [v -T <2—V-T>P] ap. (108)

The changes in S and H along an isobar obtained by integrating equation (k)
with respect to temperature are respectively

Tz
ASp = f %P-dT, (11)
PYTy
Tz
ARp = f Cp AT (12)
PYmy




Along isometrics, the changes in S and U obtained by integrating
equation (3) with respect to temperature are respectively

T2

ASy = f -C—%’- ar, (13)
vYmy
T

AUy = ® ¢y ar. (14)
AL

It is also desirable to calculate property changes along paths of
constant saturation. The changes in entropy and internal energy along
saturation found by integrating equation (5) with respect to temperature
are

ASg = Co
o le = at, (15)
T . \
AUy = f 2 [CU - P@—D :l aTt, (16)
Ty o

where V and P are the saturated volume and vapor pressure, respectively,
and are functions of temperature alone.

A typical integration path is illustrated in Fig. 1. The point "0"
is an arbitrary reference state while the path AB is a constant pressure
path along which Cp is known. The equation of state is considered to
be explicit in pressure. The application of equations (9) and (10) to
the isothermal paths OA and BC and equations (11) and (12) to AB results
in the following relations giving S, H, and U at the point C with

respect to the reference values S, Hb; and U, respectively.
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f %dT, (17)
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+ f Cp T + PpVy = PV, + PV - Ppip (18)
U=Uy+ (HE~H) - (V- BV,). (19)

It is important to note the quantities Vy and Vg 1n the above
equations are each defined by the intersection of an isobar and an
isotherm and thus the equation of state, P = P(V,T), must be solved for V.
These volumes can usually be obtained by an iterative process such as
the Newton-Raphson method. The necessity of solving for volume is
eliminated if the path AB is an isometric along which Cv is known. With
reference to Fig. 1, it can also be seen that a point such as F in the
1liquid region can be reached by a path through the two phagse region.
This, however, requires additional data to define the two phase boundary,
in particular, the variation of the vapor pressure with temperature.

The changes in S, H, and U across this two phase region may then be
determined from the Clapeyron relationship (20).

dP s" - gn

or
T(Sm _ S") =HE"-H"=T7T Q (Vm - V") (20)
aT /4 ?

where the prime notations are used to distinguish the properties of the
two phases at the same temperature and (4P/dT), is the slope of the

vapor pressure curve.



Thus, for any point in the liquid, S, H, and U may be obtained
from equations similar to (17), (18), and (19) with the addition of the
appropriate value from (20). Convenient checks on the validity of the
saturated liquid properties obtained in this manner may be obtained by
utilizing latent heat data or by the calculation of S, H, and U along
saturation from C; data with equation (15) and (16).

Other property relations may also be considered for the calcula-
tion of specific heat values from alternate thermodynamic data. These
values may be used in the absence of experimental specific heat data or
to check those data which are available. For example, Cp may be calcu-

lated from equation (21) with velocity of sound data, where the deriva-

tive %%)S is calculated from (22) which ié valid for small amplitude
sound propagation. <5V 2
J¢)
oT/p
Cp = (22)
¥ (_a_v_
By~ \&B/p
ov V2
<§>S “TwE (22)

where W is the velocity of sound. It is also possible to obtain Cp

values from Joule-Thomson coefficients, p , with equation (23).

- 3[=(&), - v] @

Caution should be observed in considering the use of (21) and (23)
inasmuch as the differences involved in both equations may become very

small, and thus produce large relative errors in the Cp values.




THERMODYNAMIC PROPERTY CALCULATIONS
BASED ON P-V-T RELATIONS AND ZERO-PRESSURE SPECIFIC HEATS

Significant errors in thermodynamic properties calculated as
previously described may arise from the uncertainty in the specific heat
data. These errors may be reduced significantly by using zero-pressure
specific heats calculated by the methods of statistical mechanics with
spectroscopic dsata, sincé ideal gas properties are generally about an
order of magnitude more accurately known than the real gas properties
determined by calorimetric methods.

In extending the isotherms of the path of integration shown in
Flg. 1 such thet B approaches the zero-pressure iscbar, it is clear that
the representation of the P-V-T surface for the real gas must be valid to
these low pressures. (The value of PV from the real gas equation of state
must approach RT as P approaches zero.) As a consequence, it now also
becomes convenient to choose the reference state on the ideal gas surface.
Since a reference point at zero pressure would result in infinite entropies
at any finite pressure on the real or ideal gas surface, the standard
reference state is usually chosen at 1 atmosphere and T, on the ideal gas
surface; this 1s equivelent to choosing the standard reference values of
enthalpy and internal energy at zero pressure and T, as B and U° are
functions of temperature alone for the ideal gas.

The path of integration for the following derivation is 1llustrated
in Fig. 2.

Equations (24) and (25) are obtained by applying (9) and (10) to
the paths OA and BC and (11) and (12) to AB.

' v T o
S = Sp +lim [ fA<%> av + f* %a’dV+ f %P-dT] (24)
° To ¥V v TV, P Y1,

P50



H //////////////// %i:::::’"

Fe
Path on real gas surface // /
> Path on ideal gas surface D
P // | e
VAPOR
A
~ 0
Y |
L.-.-.-...-.-.-.A—
() A B
| T
Path on real gas surface
-=== Path on ideal gas surface
T
(b)

Figure 2 Path of integration from ideal to
real gas surface on (a) P-T and
(b) T-S coodinates




Po0o "~ To Vo

iy [ [H@), o L@, -]

T
+ * a1 + PV - PV +PV-P*V*]. (25)
P*ITCP Aot B

o)

It is necessary to introduce the limit as P* approaches zero, since only
then do the real and 1deal surfaces goincide. Since for the ideal gas

(-a-riz > is independent of temperature, l_( -Q-EE ) = %:] ,the first integral in
v v
(24), can be evaluated at any temperature T.

vy v
T LOA <3—P-Dv = TLQA <%I‘E>v W

This integral is then replaced by three integrais

v * *
JE@ e [, [ [F )

and finally evaluated using Vy = 1;—3— and Vj = %T;-‘i to obtain
*
\j v
A VT,
f @EE) dVaRln-\-r—%-f Sav .
To Y Vo v ot TYvy

Substitution into equation (24) yields in the limit

o
g erne [TB-@)e [
s_sTo+131nRT+TV v \&, av + TOTdT. (24s)

A similar simplification of (25) yields.

H=ECI).+La{P-T<%V}W+(W-RT)+fTC§ﬂ. (258)

° T To

Equation (26) and (27) are obtained by substituting V = 1/p and
av = - dp/p? into (24a) and (25a) respectively.

i1



|67}
1]

P T
o pRT R_1 éB) ] f Cp°
STO—Rln<PO>+ Tfo [p-pg ), |+ o, T ar  (26)

N A A€ R AL L

u

It is reemphasized at thils point that the necessary low pressure
and thus large volume behavior of the real gas equation of state is
such that PV - RT. In other words (BP/BT)V for the real gas must
approach R/V in order to cancel the existing R/V term in (2ha). It is
clear that if this is not the case, then the remaining R/V term will
integrate to In V which at the upper limit is infinite.

The value of S; may be obtained from ideal gas property tabula-
o]

tions. It is noted, however, that H%

0
to the ground state energy Ug, i.e., H%
0

if such tables are used, to either tabulate H - Ug or assign a value to

is often tabulated with respect

- Ug. Thus it is appropriate,

Ug and tabulate H. Frequently it is desired to extend the range of an
existing property tabulation, in which case, from an engineering
standpoint, it is desirable to choose a reference state on the real gas

surface such that the two tabulations agree at that point. The values

of S; and H%b must then be calculated to bring ebout the desired
o]
agreement. The resulting values of H%l and SO are thus based not only

T

o [#]

on the assigned reference state of the existing‘tabulation but also on
the accuracy with which the equatibn of state represents the real gas

surface. The value of S% so obtained has no relation whatsoever with
o)

the spectroscopically determined ideal gas entropy except when the zero
point for entropy has been chosen at 0°K; in this case the agreement of

the values of Sg determined by the two methods 1s another check provided
0

by the third law of thermodynamics. The value of Ho, calculated in this

T,

12




way is not in conflict with the ; Ug tabulations based on spectroscopic

To

data since the value of Ug is not defined. ' The value of Ug may be arbi-

trarily assigned thus producing any desired value for Hgb.

Derivations similar to those above but starting with equations
(9a) and (10a) result in equations (26a) and (27a) in which P and T are
considered as independent variables.

P T O
P R (v S
S=So+Rln—°+f [—-(——]d.?+f aT (26a)
i P oo P73 T, T
H=H + \/PP [v -7 <§$> ] ar + k/nT c® ar (27a)
TO Vo BI‘P To P

APPLICATION OF AN EQUATION OF STATE TO THE THERMODYNAMIC EQUATIONS

As an illustration of the application of (26) and (27) the derived
properties S and H will be obtained in algebraic form for the equation
of state (28) presented by Strobridge [1].

P = RTp + (RniT + np + na/T + ng/T? + ng/T%) 02 + (RngT + n7) o2
4, 3 4y _-Da1gP?
+ ngTp™ + p (!19/T2 + I).]_Q/T3 + nu/'I‘ ) e

2
+ p5(n15/T2 + n33/T2 + n14/7%) e"B1eP” n;sp® (28)

It will be assumed here that the equations for zero-pressure specific
heat, vapor pressure, and the derivative of the vapor pressure with
respect to temperature are all available. For example the following

forms have been found to be adequate for some fluids.

c; = Ay + AST + AsT? + ALT® + AT (29)
InP =3B, +By/T +B,T +B, In T (30)

15




The specific heat integrals may now be replaced by,

T (o]
ASp_ o= f % ar, (31)
TO
T (o]
Mg o= f cIJ ar. (32)
TO

The derivative @—3; . with P as defined by (28) is,
<§§) = Ro + p% (Rny - ng/T% - 20, /T3 - Ung/T®) + p®ngR + p*ng
p
+ o7D26P" [ps (-2n9/T3 - 3n10/T* - Uny,/T5)
+ pS (-2n1o/T® - 3n33/T* - hn14/T5)] . (33)

For convenience the following notation is introduced:

AR (), % - o) - st62) (34)

P1

T];je [%2 (%)Q - %] de = S'(p2) - 5'(p1) (35)
Tfpiz {22 - %2 <%>p] dp = U(p2) - U(py) (36)

The quantities S(p), S'(p) and U(p) represent the corresponding
indefinite isothermal integrals. These integrals evaluated from (28)
and (33) are

1k




S(p) = - p (n,R - ny/T® - 2n, /T3 - 4n /TS) - ngRp3/2 - ngp3/3
- e tieP® (2ng/T® + 3n,0/T* + Uny,/T5)/2n,¢
- eM16P® (p2/on 4+ 1/2n2.)(20,5/T° + 3n,5/T* + lng o/TS)
-Rlnp=-R1lnp - 8'(p), (37)
§'(p) = - R In p - 5(p)¥, (38

U(p) = p (n, + 2ng/T + 30,/T2 + 5n5/T4) + n,p2/2

o~ P16P® (309/T2 + Unyo/T® + 5n,,/T*)/2n,

- 2
- e PaeP (p2/2ny¢ + 1/2036)(30,2/T2 + 4n o/T° + 5ny,/T4)
+ ﬁlspslls . (39)
Substituting the sbove relations into (26) and (27) results in
S = S;O - R 1n (pRT/Ro) + ASp_g + S'(0) - 8'(p), (¥0)

H= Hif,.o + U(p) - U(0) + B/p - RT + Al , (41)

For a point in the liquid region the entropy and enthalpy are given by

S = Sy - R 1n (8"RT/Po) +ASpg + 5'(0) - 5'(")
- (ap/az), (1/" - 1/p") + 8 (p) - s(p"), (k2)
H= H;o + U(d") - u(0) + P/d" - RT + AHp,

- m(ap/aT); (1/6" - 1/e") + Bfo - B/e" + U(e) - U(e"), (43)

where the Clapeyron relation (20) has been used to cross the two phase

region.

¥ Note that S'(p) exists even at p=0 while S(0) is infinite.
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